Generative Modeling of Convolutional Neural Networks

نویسندگان

  • Jifeng Dai
  • Ying Nian Wu
چکیده

The convolutional neural networks (CNNs) have proven to be a powerful tool for discriminative learning. Recently researchers have also started to show interest in the generative aspects of CNNs in order to gain a deeper understanding of what they have learned and how to further improve them. This paper investigates generative modeling of CNNs. The main contributions include: (1) We construct a generative model for the CNN in the form of exponential tilting of a reference distribution. (2) We propose a generative gradient for pre-training CNNs by a non-parametric importance sampling scheme, which is fundamentally different from the commonly used discriminative gradient, and yet has the same computational architecture and cost as the latter. (3) We propose a generative visualization method for the CNNs by sampling from an explicit parametric image distribution. The proposed visualization method can directly draw synthetic samples for any given node in a trained CNN by the Hamiltonian Monte Carlo (HMC) algorithm, without resorting to any extra hold-out images. Experiments on the challenging ImageNet benchmark show that the proposed generative gradient pre-training consistently helps improve the performances of CNNs, and the proposed generative visualization method generates meaningful and varied samples of synthetic images from a large-scale deep CNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CapsuleGAN: Generative Adversarial Capsule Network

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates th...

متن کامل

Introspective Generative Modeling: Decide Discriminatively

We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, des...

متن کامل

Exploring Generative Perspective of Convolutional Neural Networks by Learning Random Field Models

This paper is a case study of the convolutional neural network (ConvNet or CNN) from a statistical modeling perspective. The ConvNet has proven to be a very successful discriminative learning machine. In this paper, we explore the generative perspective of the ConvNet. We propose to learn Markov random field models called FRAME (Filters, Random field, And Maximum Entropy) models using the highl...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Erative Adversarial Networks

In this paper we address the challenging problem of unsupervised motion flow estimation. Under the assumption that image reconstruction is a super-set of the motion flow estimation problem, we train a convolutional neural network to interpolate adjacent video frames and then compute the motion flow via regionbased sensitivity analysis by backpropagation. We postulate that better interpolations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.6296  شماره 

صفحات  -

تاریخ انتشار 2014